ML Basics - todo
์ ๋ฆฌํ ๊ฒ
์ ๋ฆฌํ ๊ฒ
์ ํ๋ถ๋ฅ์ ๋ชฉํ์ ๋ฐฉ๋ฒ๋ค
์ ํ ๊ธฐ์ ํจ์ ๋ชจ๋ธ ๊ฐ์ฅ ๋จ์ํ ํํ์ ์ ํ๋ชจ๋ธ
๊ฐ์ฐ์์ ๋ถํฌ (Gaussian Distribution)
๋ฐ๋์ถ์ (Density Estimation) \(N\)๊ฐ์ ๊ด์ฐฐ๋ฐ์ดํฐ(observations) \(\mathbf{x}_1,\ldots\mathbf{x}_N\)๊ฐ ์ฃผ์ด์ก์ ๋ ๋ถํฌํจ์ \(p(\mathbf{x})\)๋ฅผ ์ฐพ๋ ๊ฒ
Appendix Reference https://vivek-singh.medium.com/an-introduction-to-gradient-descent-54775b55ba4f https://jermwatt.github.io/machine_learning_refined/not...
์ ์ ํ๋์๋ฅผ ์์์ผ ํ๋๊ฐ?
Deep Learning Modelโs Outcome is the Probability of the Variable X
Dataset ย Restaurant Location Cuisines AverageCost MinimumOrder Rating Votes Reviews De...
Deep Learning Modelโs Outcome is the Probability of the Variable X
Deep Learning Modelโs Outcome is the Probability of the Variable X