Heart Datathon 2021

less than 1 minute read

Detection Metrics

Dice Coefficient

  • \[Dice = \frac{2 |A∩B|}{(|A|+|B|)} = \frac{2 TP}{(2 TP + FP + FN)}\]

Jaccard Index and IoU

  • \[JI = \frac{DICE}{2-DICE} = \frac{|A \cap B|}{|A|+|B|-|A\cap B|}\]

Review

EDA

  • Train: 1600 (A2C: 800, A4C: 800)
  • Validation: 200 (A2C: 100, A4C: 100)
  • Too small data
    • Sensitive to apply augmentation
  • Ultrasound Image
    • Masks are not strictly following the boundaries of the object.

Worked

  • Dehaze Pre-Processing
  • CRF Post-Processing
  • ReduceLROnPlateau
  • HRnet(not used)
    • Limited with model size rule.
    • HRNet + OCR $\approx$ HRNet Unet
  • Ensemble(mean)

Not Worked

  • more augmentation
    • Hflip, Cutout, CenterCrop
  • AdamP
  • CosineAnnealingLR

Losses

  • Used
    • Tversky
    • DiceLoss
    • LogCosh
    • BCELoss
    • BCE_DICE_Combo (final)
  • Still doubt about selecting which loss to use.

Appendix

Reference

Competition info: http://www.hdaidatathon.com/

Competition github: https://github.com/DatathonInfo/H.D.A.I.2021

similar competition: https://www.kaggle.com/c/understanding_cloud_organization/discussion/114093

pytorch-goodies: https://github.com/kevinzakka/pytorch-goodies

Loss Function Library - Keras & PyTorch: https://www.kaggle.com/bigironsphere/loss-function-library-keras-pytorch

torchmetrics: https://torchmetrics.readthedocs.io/en/latest/references/modules.html?highlight=iou#iou

Medical_Img_Seg_and_Enhancement: https://github.com/GeekyGeek3371/Medical_Img_Seg_and_Enhancement

Kaggle Ultrasound Nerve Segmentation: http://fhtagn.net/prog/2016/08/19/kaggle-uns.html

semantic segmentation Loss Survey: https://arxiv.org/pdf/2006.14822.pdf

Deep Learning for Segmentation using an Open Large-Scale Dataset in 2D Echocardiography: https://arxiv.org/pdf/1908.06948.pdf

SegLoss: https://github.com/JunMa11/SegLoss

CRF: https://github.com/lucasb-eyer/pydensecrf

Leave a comment