Heart Datathon 2021
Detection Metrics
Dice Coefficient
- \[Dice = \frac{2 |Aβ©B|}{(|A|+|B|)} = \frac{2 TP}{(2 TP + FP + FN)}\]
Jaccard Index and IoU
- \[JI = \frac{DICE}{2-DICE} = \frac{|A \cap B|}{|A|+|B|-|A\cap B|}\]
Review
EDA
- Train: 1600 (A2C: 800, A4C: 800)
- Validation: 200 (A2C: 100, A4C: 100)
- Too small data
- Sensitive to apply augmentation
- Ultrasound Image
- Masks are not strictly following the boundaries of the object.
Worked
- Dehaze Pre-Processing
- CRF Post-Processing
- ReduceLROnPlateau
- HRnet(not used)
- Limited with model size rule.
- HRNet + OCR $\approx$ HRNet Unet
- Ensemble(mean)
Not Worked
- more augmentation
- Hflip, Cutout, CenterCrop
- AdamP
- CosineAnnealingLR
Losses
- Used
- Tversky
- DiceLoss
- LogCosh
- BCELoss
- BCE_DICE_Combo (final)
- Still doubt about selecting which loss to use.
Appendix
Reference
Competition info: http://www.hdaidatathon.com/
Competition github: https://github.com/DatathonInfo/H.D.A.I.2021
similar competition: https://www.kaggle.com/c/understanding_cloud_organization/discussion/114093
pytorch-goodies: https://github.com/kevinzakka/pytorch-goodies
Loss Function Library - Keras & PyTorch: https://www.kaggle.com/bigironsphere/loss-function-library-keras-pytorch
torchmetrics: https://torchmetrics.readthedocs.io/en/latest/references/modules.html?highlight=iou#iou
Medical_Img_Seg_and_Enhancement: https://github.com/GeekyGeek3371/Medical_Img_Seg_and_Enhancement
Kaggle Ultrasound Nerve Segmentation: http://fhtagn.net/prog/2016/08/19/kaggle-uns.html
semantic segmentation Loss Survey: https://arxiv.org/pdf/2006.14822.pdf
Deep Learning for Segmentation using an Open Large-Scale Dataset in 2D Echocardiography: https://arxiv.org/pdf/1908.06948.pdf
SegLoss: https://github.com/JunMa11/SegLoss
Leave a comment